now look at instructions in memory, how they got there and how they execute: 1. Start by using an editor to enter compiler language statements. The editor writes your source code to a disk file. 2. A compiler reads the source code disk file and produces assembly language instructions for a specific ISA that will perform your compiler language statements. The assembly language is written to a disk file. 3. An assembler reads the assembly language disk file and produces a relocatable binary version of your program and writes it to a disk file. This may be a main program or just a function or subroutine. Typical file name extension is .o or .obj 4. A linkage editor or binder or loader combines the relocatable binary files into an executable file. Addresses are relocated and typically all instructions are put sequentially in a code segment, all constant data in another segment, variables and arrays in another segment and possibly making other segments. The addresses in all executable files for a specific computer start at the same address. These are virtual addresses and the operating system will place the segments into RAM at other real memory addresses. Windows file extension .exe 5. A program is executed by having the operating system load the executable file into RAM and set the program counter to the address of the first instruction that is to be executed in the program. All programs might have the same starting address, yet the operating system has set up the TLB to translate the virtual instruction and data addresses to physical memory addresses. The physical addresses are not available to the program or to a debugger. This is part of the security an operating system provides to prevent one persons program from affecting another persons program. A simple example: Compiler input int a, b=4, c=7; a = b + c; Assembly language fragment (not unique) lw $2,12($fp) b at 12 offset from frame pointer lw $3,16($fp) c at 16 offset from frame pointer add $2,$2,$3 R format instruction sw $2,8($fp) a at 8 offset from frame pointer Memory addresses in bytes, integer typically 4 bytes, 32 bits. Loaded in machine virtual address content 32-bits 8-hexadecimal digits 00000000 8FC2000C lw $2,12($fp) 00000004 8FC30010 lw $3,16($fp) 00000008 00000000 nop inserted for pipeline 0000000C 00431020 add $2,$2,$3 00000010 AFC20008 sw $2,8,($fp) $fp has 10000000 (data frame) 10000000 00000000 10000004 00000001 10000008 00000000? a after execution 1000000C 00000004 b 10000010 00000007 c Instruction field format for add $2,$2,$3 0000 0000 0100 0011 0001 0000 0010 0000 binary for 00431020 hex vvvv vvss ssst tttt dddd dhhh hhvv vvvv 6,5,5,5,5,6 bit fields 0 | 2 | 3 | 2 | 0 | 32 decimal values of fields Instruction field format for lw $2,12($fp) $fp is register 30 1000 1111 1100 0010 0000 0000 0000 1100 binary for 8FC2000C hex vvvv vvxx xxxd dddd aaaa aaaa aaaa aaaa 6,5,5,16 bit fields 35 | 30 | 2 | 12 decimal values of fields The person writing the assembler chose the format of an assembly language line. The person designing the ISA chose the format of the instruction. Why would you expect them to be in the same order? A very simplified data flow of the add instruction. From the registers to the ALU and back to the registers. The VHDL to use the ALU will be given to you as: ALU: entity WORK.alu_32 port map(inA => EX_A, inB => EX_aluB, inst => EX_IR, result => EX_result); We will call the upper input "A" and the lower input "B" and the output "result". The extra input, EX_IR, not shown on the diagram above is the instruction the ALU is to perform, add, sub, etc. The instructions we will use in this course are specifically: cs411_opcodes.txt Each student needs to understand what the instructions are and the use of each field in each instruction. (Note: a few have bit patterns different from the book and different from previous semesters in order to prevent copying.) Our MIPS architecture computer uses five clocks to execute a load word instruction. 1 0 0 0 1 1 x x x x x r r r r r ---2's complement address------ lw r,adr(x) 1. Fetch the instruction from memory 2. Decode the instruction and read the value of register xxxxx 3. Compute the memory address by adding the sign extended bottom 16 bits of the instruction to the contents of register xxxxx. 4. Fetch the data word from the memory address. 5. Write the data word from memory into the register rrrrr. When we cover "pipelining" you will see why five clocks are used for every instruction, even though some instructions need less than five. Computer languages come in many varieties. The information above applies to languages such as C, C++, Fortran, Ada and others. Many languages abstract the concept of binary relocatable code, in what was originally called "crunch code". These languages use their own form of intermediate files. For example Pascal, Java, Python and others. Other languages directly interpret the users source files, possibly with some preprocessing. For example SML, Haskel, Lisp, MatLab, Mathematica and others. With a completely new computer architecture, the first "language" would be an assembly language. From this, a primitive operating system would be built. Then, typically an existing C compiler would be modified for the new computer architecture. An alternative is to build a cross compiler from C and gas, to bootstrap existing code to the new architecture. From then on, "reuse" goes into full effect and millions of lines of existing software can be running on the new computer architecture.
The blog provides study material for Computer Science(CS) aspirants. Mostly says "material nahi milta, padhun kahan se.", I think If you can not find content on the Internet, then you are not a CS student. Dedicated to (Prof. Rakesh Kumar, DCSA, K.U.Kurukshetra, HARYANA, INDIA)- "Ek teacher ka bahut jyada padhna, bahut jyada jaroori hota hai."
Monday, 24 June 2013
CPU Operation
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment